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ABSTRACT: Sisal fibers were used for the reinforcement
of a polypropylene (pp) matrix. Composites consisting of
polypropylene reinforced with short sisal fibers were pre-
pared by melt-mixing and solution-mixing methods. A large
amount of fiber breakage was observed during melt mixing.
The fiber breakage analysis during composite preparation
by melt mixing was carried out using optical microscopy. A
polynomial equation was used to model the fiber-length
distribution during melt mixing. The experimental mechan-
ical properties of sisal/PP composites were compared with

existing theoretical models such as the modified rule of
mixtures, parallel and series models, the Hirsch model, and
the Bowyer–Baders model. The dependence of the tensile
strength on the angle of measurement with respect to fiber
orientation also was modeled. © 2003 Wiley Periodicals, Inc.
J Appl Polym Sci 88: 602–611, 2003
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INTRODUCTION

In the field of composites, the fiber reinforcement of
matrices was initially developed using man-made fi-
bers such as glass, carbon, and aramid to take advan-
tage of their high tensile moduli.1 Over the last few
years, many works have been dedicated to fibers of
vegetable origin, with the scope of replacing man-
made fibers.2 Numerous reasons support this choice:
As a material source, vegetable fibers are available
worldwide, renewable, and biodegradable. They may
also represent an economical interest for the agricul-
tural sector. Concerning their intrinsic properties,
these fibers have a specific weight half that of glass
fibers and a tensile modulus for the ultimate fibril
almost as high as for aramid fibers.3 Moreover, they
cause no damage by abrasion to the processing ma-
chines as glass fibers do, which also give a high
amount of ashes on combustion.1 The biodegradabil-
ity of natural fibers can contribute to a healthy ecosys-
tem, while their low costs and high performance are
able to fulfill the economic interest of industries.4

In recent years, short natural fiber-reinforced poly-
mer composites have gained wide importance due to
the advantages they impart in processing and low cost

coupled with high strength.5 For better processability,
these composite materials are often filled with short
discontinuous fibers oriented in the direction of the
applied load in order to take full advantage of the
reinforcing property of the fiber.6–8 Since natural fi-
bers are strong, light in weight, abundant, nonabra-
sive, nonhazardous, and inexpensive, they can serve
as an excellent reinforcing agent for plastics.9,10 At
present, natural vegetable fibers (NVFs) are used in
composites, where high strength and stiffness are not
of first priority. NVFs reduce the mass of the compos-
ite, because they have a low density. Their production
is economical, with low requirements on equipment,
and they can easily by recycled.11 Natural fiber com-
posites combine good mechanical properties with a
low specific mass.12

Over the past decade, cellulosic fillers of a fibrous
nature have been of great interest as they would give
composites with improved mechanical properties
compared to those containing nonfibrous fillers.13–15

Extensive research studies have been carried out over
the last few years in the field of natural fiber-rein-
forced thermoplastics. These include the interesting
works of Kokta and coworkers.16–22 Felix and Gaten-
holm23 reported the effect of a compatibilizing agent
and the nature of adhesion in composites of cellulose
fibers and polypropylene (PP). Among the various
natural fibers, sisal fiber possesses a moderately high
specific strength and stiffness and can be used as a
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reinforcing material in polymeric resin matrices to
make useful structural composite materials.13 Sisal fi-
ber is a lignocellulosic material extracted from the
plant Agave sisalana and is available in quantity in the
southern parts of India. The incorporation of sisal fiber
into plastics and elastomers to obtain cost reduction
and reinforcement has been reported by various work-
ers. Parameswaran and Abdulkalam24 investigated
the feasibility of developing polymer-based compos-
ites using sisal fiber. Pavithran et al.25 reported the
impact properties of unidirectionally oriented sisal
fiber composites. Thomas and coworkers reported on
the use of sisal and pineapple fibers as a potential
reinforcing agent in polyethylene, thermosets (epoxy
resin, phenol–formaldehyde, polyester), polystyrene,
and natural rubber.25–30 Joseph and coworkers,31,32

therefore, carried out a detailed investigation on sisal
fiber-reinforced PP composites with special reference
to the effects of fiber length, processing conditions,
fiber loading, and interface adhesion. In this article,
we made an effort to describe the relative ability of
some selected already-existing mathematical mod-
els—the modified rule of mixtures, parallel, series,
Hirsch, and Bowyer–Baders—to predict the variation
in the mechanical properties of PP composites with
increasing loading of short sisal fiber. The fiber-length
distribution and directional property of short sisal
fiber-reinforced PP composites were also modeled.

EXPERIMENTAL

Materials

Isotactic PP (Koylene M3060) was supplied by IPCL
(Baroda, India). Sisal fiber (Agave sisalana) was ob-
tained from local sources. The physical and mechani-
cal properties of PP and sisal fiber are given in Table I.
The fiber was washed thoroughly with water and
dried in an air oven at 80°C for 6 h, before being
chopped into the desired lengths ranging from 1 to 30
mm for preparation of the composites.

Fiber treatment32

The PMPPIC used for this work was supplied by
Aldrich Chemical Co. (Milwaukee, WI). To the sisal

fibers dipped in chloroform (distilled) in a 500-mL RB
flask, varying percentages of PMPPIC (5–12% by
weight of the fiber) in chloroform (50 mL) was added
to a pressure equalizing funnel. The addition contin-
ued for 30 min and the contents were stirred using a
magnetic stirrer. The whole assembly was immersed
in a water bath at 70°C before the addition of PMPPIC.
After the complete addition of PMPPIC, the reaction
was allowed to continue for 2 h more. The urethane-
modified fibers were collected.

Composite preparation

The PP–sisal composites were prepared by either melt
mixing or solution mixing. In the melt-mixing method,
the fiber was added to a melt of PP and mixing was
performed in a Haake Rheocord mixer. To optimize
the mixing parameters, composites were prepared by
varying the mixing time, rotor speed, and chamber
temperature. The mix was taken out from the mixer
while hot and then subjected to sheeting using a two-
roll mill.

Rectangular specimens measuring 150 � 150 � 2.5
mm were prepared by compression molding at a pres-
sure of about 8 MPa and at a temperature of 170°C.
They were then cut into specimens of size 120 � 12
� 2.5 mm.

In the solution-mixing method, a technique devel-
oped by our group,31,33 the fiber was mixed with a
viscous slurry of PP in a toluene/xylene mixture (1:1
ratio) that was prepared by adding the toluene/xylene
mixture to a melt of the polymer. The mix was then
completely dried in an air oven to remove the solvent
and then was subjected to extrusion through a
hand-operated injection-molding machine. Composite
sheets of dimensions 120 � 12 � 2.5 mm were pre-
pared by a compression-molding technique.

Preparation of oriented fiber composites

The specimens of oriented fiber composites were pre-
pared by a combination of injection-molding and com-
pression-molding techniques as reported elsewhere.26

The composite was first processed to obtain 4-mm-
thick cylindrical rods using an injection-molding ma-
chine. Rectangular specimens measuring 120 � 26.5
� 2.5 mm were prepared by aligning the extrudate
(120-mm long and 4-mm diameter) in a leaky mold
and then compression molding at a pressure of about
8 MPa and at a temperature of 170 � 5°C. The speci-
mens were removed after cooling the mold below
50°C.

Mechanical testing

Rectangular specimens were prepared as reported
elsewhere26 for carrying out tensile testing using an

TABLE I
Physical and Mechanical Properties of PP and Sisal Fiber

Properties PP Sisal fiber

Melt flow index (g/10 min) 3 —
Density (g/cm3) 0.9 1.45
Cellulose content (%) — 85–88
Lignin content (%) — 4–5
Tensile strength (MPa) 35 400–700
Tensile modulus (MPa) 498 9000–20,000
Elongation at break (%) 10.33 5–14
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electronic tensile testing machine TNE series 9200 at a
crosshead speed of 50 mm min�1 and a gauge length
of 50 mm. The tensile modulus of the composites was
calculated from the load-displacement curve.

Fiber breakage analysis

During melt mixing in a Rheocord mixer, fibers un-
dergo a considerable amount of breakage.31 The extent
of fiber breakage in a melt-mixed composite is evident
from the optical photograph shown in Figure 1. Here,
fibers were extracted from the melt-mixed composite
by dissolving the PP matrix in a toluene/xylene mix-
ture at the ratio 2:1 as a solvent and measuring the
fiber lengths using a traveling microscope.

THEORETICAL ASPECTS

Modeling of length distribution curves (during
melt mixing)

Using a least-square fit, the amount of fiber (number
fraction in percentage) having a fixed length in the
composite prepared at a given mixing speed is found
to follow the following relation:

D�%� � A � Bl � Cl2 (1)

where D is the amount of fiber (number fraction in
percentage) having a given length in percentage in the
composite and l is the length of the fiber. A is a
constant representing the total mechanical force dis-
tribution resulting from the rotor speed. The terms B
and C represent the centrifugal and centripetal effects
of the mixer on the upper, middle, and lower range
sizes of the fillers.

Modeling of tensile properties

Several theories have been proposed to model the
tensile properties of composite material in terms of

different parameters.34–37 In this article, we deal with
theories of particulate and fibrous inclusions in a rigid
matrix.

Modified rule of mixtures (MROM)

The modified rule of mixtures38 can be given as fol-
lows:

Tc � Tm�1 � Vf� � TfVfe (2)

where Tc is the ultimate strength of the composites;
Tm, the matrix strength at the failure strain of the fiber;
Tf, the ultimate strength of the fiber; Vf, the fiber-
volume fraction; and Vfe, the effective fiber-volume
fraction. The effective fiber-volume fraction is given in
terms of the fiber-volume fraction and the ratio of real
contribution as follows:

Vfe � Vf �1 � P� (3)

where P is the degradation parameter for the effective
fiber-volume fraction, lying between 0 and 1. P can be
calculated from the microgeometry of the composite
components and depends only on the fiber-volume
fraction because the microgeometry is intimately re-
lated to the fiber-volume fraction under identical man-
ufacturing conditions.

P can be calculated from the equation

P �
�Tc

TfVf
(4)

where �Tc is the difference between the experimen-
tally measured strength and the strength predicted by
the rule of mixtures.

Parallel and series models

The parallel and series models39 are used to determine
the modulus and tensile strength of short-fiber com-
posites. The equations for tensile strength are

Tc � TfVf � TmVm (parallel model) (5)

Tc �
TmTf

TmVf � TfVm
(series model) (6)

where Tc, Tm, and Tf are the tensile strength of the
composite, matrix, and fiber, respectively. If the mod-
ulus is the parameter under study, notations such as
Mc, Mm, and Mf may be used instead of Tc, Tm, and Tf,
where Mc, Mm, and Mf are the Young’s moduli of the
composite, matrix, and fiber, respectively.

Figure 1 Optical photograph of fibers extracted from melt-
mixed composite showing extent of fiber breakage.

604 JOSEPH ET AL.



Hirsch model

The Hirsch model40 is a combination of parallel and
series models. Using this model, the tensile strength
and Young’s modulus are determined by the equa-
tions

Tc � x�TmVm � TfVf� � �1 � x�
TfTm

�TmVf � TfVm�
(7)

where x is a parameter which determines the stress
transfer between the fiber and matrix.

In terms of the modulus, the equation is

Mc � x�MmVm � MfVf� � �1 � x�
Mf Mm

MmVf � MfVm
(8)

Counto’s model

The Counto model41 for a two-phase system proposed
by Counto is given by the equation

1
Ec

�
1 � Vf

1/2

Em
�

1
�1 � Vf

1/2�;Vf
1/2Em � Ef

(9)

where E is the modulus; c, m, and f refer to the com-
posite, matrix, and fiber, respectively; and Vf is the
volume fraction of the fiber. This is applicable mainly
to concrete systems. The schematic representations of
the above four models are given in Figure 2.

Bowyer–Bader’s model

According to Bowyer–Bader’s42 model, the tensile
strength is given by

Tc � TfK1K2Vf � TmVm (10)

where K1 is the fiber-orientation factor. Depending on
the fiber orientation, K1 also changes. K2 is the fiber-
length factor. For fibers with

l � lc,K2 � l � lc/2l (11)

For fibers with

l � lc,K2 � l/2 lc (12)

where l is length of the fiber, and lc, its optimum
length. According to the above model, the Young’s
modulus also can be calculated using the equation

Mc � MfK1K2Vf � MmVm (13)

Modeling of fiber orientation

The dependence of the angle of fiber orientation on the
modulus or tensile strength of fiber composites can be
studied using the equation43

1
E�

�
Cos2 �

EL
�

Sin2 �

ET
(14)

where E� is the modulus of the composite wherein
fibers deviate from the direction of test by the angle �;
EL, the longitudinal composite modulus (� � 0); and
ET, the transverse composite modulus (� � 90°).

RESULTS AND DISCUSSION

Theoretical modeling of fiber-length distribution
curves

Figure 3 depicts the fiber-length distribution curves
showing the percentage amount (number fraction in
percentage) of fiber having different lengths in the
composite prepared at different mixing speeds. From
the figure, it is very clear that the amount (number
fraction in percentage) of fiber having small lengths
increases with increase in the rotor speed (rpm). For
example, the percentage of fiber with length of 2 mm
or less at 50 rpm is 28.58; at 40 rpm, the value is 26.08;
and at 30 rpm, it is 16.13. On the contrary, the per-

Figure 2 Schematic representation of parallel, series,
Hirsch, and Counto’s models.
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centage of a 10-mm fiber is maximum at 30 rpm (i.e.,
at a low rotor speed).

The experimental data on the fiber-length distribu-
tion is found to fit nicely into a second-order polyno-
mial equation [eq. (1)]. The values of the constants in
eq. (1) for different mixing speeds are given in Table II.
It is clear that the effect of increasing the rotor speed
results in an increase in the value of A. This increased
mechanical stress due to increased rotor speed results
in more and more distribution for smaller lengths and
an opposite trend for bigger fiber lengths, that is, as
the rotor speed increases, the amount of fibers having
small lengths increases.

Theoretical modeling of tensile properties

Figure 4 gives a comparison of the variation in the
experimental and theoretical tensile strength values of
melt-mixed random composites with fiber loading (fi-
ber length, 6 mm; temperature, 170°C; rpm, 50). It is
interesting to note that, in all cases, the tensile strength

increased with increase in the volume fraction of the
fibers. On analyzing the figure, it is very clear that the
experimental value exactly fits with the theoretical
value in the case of the modified rule of mixtures. It
can be assumed that the model (modified rule of mix-
tures) predicts the actual composite strength because
the value of P in eq. (4) is defined to account for the
microgeometry of real composites.38 At a low fiber
content, the fiber may act as a flaw in the matrix
(plasticization effect), reducing the tensile strength of
the composite.31 Next to MROM, the Bowyer–Bader
model, the series model and the Hirsch model
showed good agreement with the experimental ten-
sile-strength values. At low fiber loading, these mod-
els are in close agreement with the experimental ten-
sile-strength value, but as the volume fraction of the
fiber increases, the extent of deviation from the exper-
imental value also increases. The agreement in tensile-
strength values of the various theoretical models with
that of the experimental values is in the order MROM
	 Bowyer–Bader 	 series 	 Hirsch 	 parallel. The
deviations exhibited by the system are due to the
difference in the mode of stress transfer in short-fiber
composites. In the case of short-fiber composites, the
stress transfer is a function of fiber orientation, stress
concentration at fiber ends, optimum fiber length, etc.
When the concentration of the fiber in the matrix is
low, stress will be uniformly distributed in the com-
posite and, consequently, satisfactory agreement be-
tween theoretical and experimental values is ob-

Figure 3 Fiber-length distribution curves showing the per-
centage amount of fiber having different lengths in the com-
posite prepared at different mixing speeds.

TABLE II
Values of the Constants A, B, and C in Eq. (1) for

Different Mixing Speeds (Rotor Speeds)

No. Speed (rpm) A B C

1 30 20.47 �7.6 0.88
2 40 29 �9.7 0.95
3 50 32.70 �9.42 0.825

Figure 4 Experimental and theoretical curves for the vari-
ation of tensile strength against fiber loading for melt-mixed
random sisal–PP composites (fiber length 6 mm).
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served. But as the concentration of fiber increases,
fiber agglomeration predominates, which causes an
uneven distribution of the applied load in the com-
posite. Since this factor is not accounted for by the
models, they deviate from the experimental value to
different extents.

From the study, it is also clear that the value of “x”
in the Hirsch model, which is a function determining
the efficient stress transfer, has some role in predicting
the correct experimental tensile strength. The best cor-
relation between theoretical and experimental values
was obtained when the value of x is 0.1. Further re-
duction in the x value is found to decrease the tensile-
strength values only to the fourth decimal place,
which is not prominent as far as tensile strength is
concerned. In the Bowyer–Baders model, tensile
strength is calculated using eq. (15), which depends
upon two factors: K1, the fiber-orientation factor, and
K2, the fiber-length factor. The agreement between
theoretical and experimental values was found only
when the values of K1 and K2 were 0.2 and 0.33,
respectively. In this case, the value of K1, for good
agreement between theoretical and experimental val-
ues, was found to be 0.2, because it has already been
reported that the value of K1 for fibers arranged in a
random fashion is 0.2.45 K2 is calculated using eq. (16)
since l � 6 mm and lc � 2 mm.31 Usually, parallel and
series models are used to describe the strength of
continuous fiber-reinforced polymeric composites. In
the case of the parallel model, it is assumed that iso-
strain conditions exist for both matrix and fiber,
whereas in the case of a series model, stress was
assumed to be uniform in both the matrix and fiber.41

The assumption of either uniform stress or uniform
strain is clearly an oversimplification in this case. The
stress-transfer mechanism of continuous fiber-rein-
forced composites is different from that of short-fiber
composites.

The Young’s modulus values of melt–random-
mixed (170°C) composite samples are compared with
the theoretical prediction in Figure 5. It is very clear
from the figure that the tensile modulus of randomly
oriented composites show a reasonable agreement
with all the models at low fiber concentrations. This
may be due to uniform distribution of an applied load
as a result of well-dispersed fibers in the matrix at low
fiber concentrations. But as the fiber concentration
increases, theoretical models deviate from the experi-
mental value to different extents. This may be due to
fiber agglomeration and fiber–fiber interactions at
higher fiber loadings. In all cases of fiber concentra-
tions, it is interesting to see that the series, the Bow-
yer–Bader, and the Hirsch models are in good agree-
ment with the experimental values, although the
Hirsch model shows a slight positive deviation, while
the series and Bowyer–Bader models exhibit a nega-
tive deviation. In the case of the Hirsch model, the

value of x � 0.1 is selected because it gives good
agreement with the experimental values for randomly
oriented composites.

Theoretical modeling of tensile properties of
chemically treated fiber composites

When sisal fibers are subjected to chemical treatment
using PMPPIC, the hydrophilicity of the fiber is re-
duced. This results in a better compatibility between
the fiber and the PP matrix, thereby increasing the
tensile properties of the composite. A possible hypo-
thetical chemical structure of the bonding of PMPPIC
at the interfacial area of the sisal fiber and PP is given
in Figure 6.

When the fiber surface is modified by a polymeric
interphase, interdiffusion between PP and cellulose
fibers might be expected, leading to increased tensile
strength of the composite. The longer the chain of the
modifier, the better are the tensile properties of the
composite. The longer, flexible chain of PMPPIC is
able to diffuse deeper into the matrix, and PP becomes
involved more fully in the interchain entanglements.44

This contributes to the enhanced mechanical perfor-
mance of the system.

Figure 7 represents the experimental and theoretical
curves of the tensile strength of the composite
(PMPPIC-treated) as a function of fiber loading. It is
interesting to note that the experimental values exactly
fit with the values suggested by the modified rule of
mixtures at all fiber loadings. A good correlation be-
tween the theoretically and experimentally observed
tensile strength was seen in the case of the series,

Figure 5 Experimental and theoretical curves for the vari-
ation of the Young’s modulus against fiber loading for melt-
mixed random sisal–PP composites (fiber length 6 mm).
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Hirsch, and Bowyer–Bader models, although these
models show a slight deviation from the experimental
values. Although the parallel model shows positive
deviation, the deviation is less compared to the un-
treated fiber composites, which can be understood
from Figure 4. Figure 8 shows the experimental and
theoretical curves of the Young’s modulus of the

PMPPIC-treated composite as a function of fiber load-
ing. Similar to the tensile strength, the tensile modulus
also increases in the case of the PMPPIC-treated sisal
fiber composite compared to untreated composites.
Since the tensile modulus increases to high values, it is
in close agreement with the parallel model at certain
concentrations rather than to any other models.

Theoretical modeling of fiber-length effect on
tensile properties

The relationship between the length and properties of
a short fiber-reinforced polymeric matrix deserves
much importance experimentally and theoretically.
Figure 9 represents the tensile strength–fiber length
plots of melt-mixed random fiber composites (both
experimental and theoretical). In the present study,
MROM and the modified Bowyer–Baders models
were used for the calculation of the tensile strength.
The optimum fiber length was found to be 2 mm from
an earlier study.31 Hence, other lengths such as 1 mm
are taken as subcritical, while 6, 10, and 15 mm, as
supercritical lengths. In all the cases, the concentration
of the fiber in the composite was 20%. The MROM
exactly fits with the experimental values at all fiber
lengths (as explained earlier). The Bowyer–Bader
model is in good agreement with the experimental
values.

Tensile properties were calculated using eqs. (15)
and (18) and they depend upon the value of K2 since it
is the fiber-length factor. The value of K2 in eqs. (15)

Figure 6 Possible hypothetical chemical structure of bond-
ing of PMPPIC at the interfacial area of sisal fiber and PP.

Figure 7 Experimental and theoretical curves of tensile
strength against fiber loading (PMPPIC-treated) for melt-
mixed random sisal–PP composite (fiber length 6 mm).

Figure 8 Experimental and theoretical curves of the
Young’s modulus as a function of fiber loading (PMPPIC-
treated) for melt-mixed random sisal–PP composite (fiber
length 6 mm).
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and (18) is different for different fiber lengths. For
1-mm fibers, the value of K2 was calculated using eq.
(17), and for 6-, 10-, 15-, 20-, and 30-mm fibers, K2 was
calculated using eq. (16). As fiber length increases, the
possibility of entanglement also increases. Moreover,
it is observed that as the fiber length is minimum the
fiber can pack effectively and can give better tensile
properties. Thus, at a low fiber length (2 mm), the
tensile strength is high and it is close to that of the
Bowyer–Baders model. As the fiber length increases,
the theoretical values deviate more and more from the
experimental values.

Figure 10 represents the modulus–fiber length plots
of melt-mixed random fiber composites. The Bowyer–
Bader model is used to calculate the tensile modulus.
It is very clear from Figures 9 and 10 that at a 2-mm
fiber length there is fairly good agreement between the
theoretical and experimental values in the case of ten-
sile strength and tensile modulus values. This clearly
indicates that at an optimum fiber length the compos-
ite shows maximum properties.

Theoretical modeling of angular dependence of
composite tensile properties

Figure 11 represents the experimental and theoretical
plots of the tensile strength of solution-mixed compos-
ites as a function of the angle of measurement with
respect to the fiber orientation. Equation (19) applies
to situations when property measurement is done

with different angles to the longitudinal orientation (�
� 0°). At 10% fiber concentration, it can be seen that
there is good agreement between the experimental

Figure 9 Experimental and theoretical curves of tensile
strength against fiber length in the case of melt-mixed ran-
dom composites (fiber loading 20%).

Figure 10 Experimental and theoretical curves of the
Young’s modulus against fiber length in the case of melt-
mixed random composites (fiber loading 20%).

Figure 11 Experimental and theoretical plots of tensile
strength of solution mixed sisal–PP composites of a function
of the angle of measurement with respect to fiber orientation
(fiber length 6 mm) at different fiber loadings.
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and theoretical plots. The deviation is maximum at
lower degrees. At 20% fiber loading, the best fit is
observed at 40°. When the fiber concentration is 30%,
good agreement between the experimental and theo-
retical values is obtained at most of the angles, espe-
cially at 40 and 60°. It can be generally seen that eq.
(19) successfully presents the variation in the experi-
mental tensile strength with the fiber orientation an-
gle. At longitudinal (� � 0) and transverse (� � 90°)
orientation, experimental and theoretical values
merge into a single value.

Similar plots for the Young’s modulus of the com-
posites are presented in Figure 12. At low fiber loading
(10%), the best agreement was observed at 20 and 80°.
In the case of 20% fiber loading, the best agreement
between experimental and theoretical values are ob-
served at 60°. It is surprising to see the good agree-
ment between the theoretical and experimental values
at all the angles for the composite containing 30% sisal
fiber. These plots reveal the considerable sensitivity of
the modulus to the fiber orientation experimentally
and theoretically. It also clarifies the significance of
good orientation for achieving high moduli. In gen-
eral, it can be concluded that the equation is able to
reflect the anisotropy in the tensile properties of fiber-
reinforced PP composites.

Deviation from the models

As we have already seen, many models deviate from
the experimental results. This is because of various
reasons such as the presence of voids, fiber–fiber in-
teraction at higher loadings, and poor fiber–matrix
interaction. The chance of the formation of microvoids
between the fiber and matrix during the preparation
of the composites greatly influences the tensile prop-
erties. At higher fiber loadings, there is a chance of
fiber agglomeration, which also influences the tensile
properties of the composites. Sisal fiber is hydrophilic
and the PP matrix is hydrophobic. So, the resulting
sisal/PP composite is incompatible, giving rise to poor
fiber–matrix adhesion. This may contribute to a poor
stress transfer between the matrix and the fiber, lead-
ing to unsatisfactory tensile properties. These factors
are not accounted for in any of the models used in the
study. Moreover, most of the models assume a cylin-
drical shape for the fibers while sisal fiber is not per-
fectly cylindrical due to surface irregularities, which is
evident from Figure 13(a). The chance of formation of

Figure 12 Experimental and theoretical plots of the
Young’s modulus of solution mixed sisal–PP composites as
a function of the angle of measurement with respect to fiber
orientation (fiber length 6 mm) at different fiber loadings.

Figure 13 (a) Scanning electron micrograph of the surface of the sisal fiber. (b) Optical photomicrograph showing
transcrystallinity at the interphase between fiber and PP in the composite.
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transcrystallinity [Fig. 13(b)] at the fiber matrix inter-
face also affects the tensile properties of the compos-
ites, which is not accounted for any of the above
models. Since the models used in the study do not
account for the presence of voids, fiber–fiber interac-
tions, nonuniform shape of the sisal fiber, poor fiber–
matrix interaction, and formation of transcrystallinity
at the interphase between the fiber and the matrix, the
models show some deviations from the experimental
behavior.

CONCLUSIONS

A comparison was made between the experimental
results and the theoretical calculations from various
models on the fiber-length distribution, tensile prop-
erties with fiber loading, and fiber orientation (angle
of measurement) in the case of short sisal fiber-rein-
forced PP composites. Fiber-length distribution curves
were modeled using a polynomial equation. Tensile
properties of both solution-mixed (random) and melt-
mixed (random only) composites were studied. The
polynomial equation was found to be successful to
model the fiber-length distribution. The various theo-
retical models used were MROM, parallel, series,
Hirsch, and Bowyer–Bader. In the case of the series
model, stress was assumed to be uniform in both the
matrix and the fiber.34 This condition can be satisfied
fully in the case of longitudinally oriented fiber com-
posites. That is why there is close agreement with the
experimental and theoretical values in the case of the
series model. The parallel model deviates the maxi-
mum from the experimental value in most of the cases.
The experimental and theoretical relationship between
the length and the tensile properties of short sisal
fiber-reinforced PP was studied. All the equations pre-
dicted superior tensile performance at the optimum
length of the sisal fiber. The anisotropy in tensile
strength and modulus with the angle of fiber orienta-
tion was studied and found to be in good agreement
with the theoretical data. Finally, it is important to
mention that the deviation observed in the case of
experimental values from the theoretical values is due
to the presence of voids, fiber–fiber interactions, non-
uniform shape of the sisal fiber, poor fiber–matrix
adhesion, and formation of transcrystallinity at the
interphase between the fiber and the matrix.
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